How (Un)stable Are Vandermonde Systems?
نویسنده
چکیده
Many problems in applied and numerical analysis eventually boil down to solving large systems of linear algebraic equations. Since the matrices and right-hand sides of such systems are typically the result of (sometimes extensive) computations, they are subject to an unavoidable level of noise caused by the rounding errors committed during their generation. It is then a matter of practical concern trying to estimate the effect of such uncertainties upon the solution of the system. A common answer and one which we shall adopt in the sequel concerning any nonsingular system
منابع مشابه
TR-2013003: Polynomial Evaluation and Interpolation: Fast and Stable Approximate Solution
Multipoint polynomial evaluation and interpolation are fundamental for modern algebraic and numerical computing. The known algorithms solve both problems over any field by using O(N log N) arithmetic operations for the input of size N , but the cost grows to quadratic for numerical solution. Our study results in numerically stable algorithms that use O(uN log N) arithmetic time for approximate ...
متن کاملPolynomial Evaluation and Interpolation: Fast and Stable Approximate Solution
Multipoint polynomial evaluation and interpolation are fundamental for modern algebraic and numerical computing. The known algorithms solve both problems over any field by using O(N log N) arithmetic operations for the input of size N , but the cost grows to quadratic for numerical solution. Our study results in numerically stable algorithms that use O(uN log N) arithmetic time for approximate ...
متن کاملStability analysis of algorithms for solving confluent Vandermonde-like systems
A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relativ...
متن کاملStability Analysis of Algorithms for Solving Confluent
A confluent Vandermonde-like matrix P(a0, a, an) is a generalisation of the confluent Vandermonde matrix in which the monomials are replaced by arbitrary polynomials. For the case where the polynomials satisfy a three-term recurrence relation algorithms for solving the systems Px b and Pra f in O(n2) operations are derived. Forward and backward error analyses that provide bounds for the relativ...
متن کاملOn second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize
Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...
متن کامل